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The stochastic amplification of a periodic signal in a truly nonlinear Fokker-Planck model, whose drift
coefficient exhibits a functional dependence on the distribution function, is analyzed numerically by means of
a finite-difference method. Our aim is to check the validity of basic concepts widely used in studying linear
and/or undriven systems. A perturbation approach to numerically evaluate the generalized susceptibility of the
model by means of the linear response theory is tested and found to be adequate for weak driving fields. We
also check the validity of the Floquet theory and theH theorem for which no extension to the case of truly
nonlinear driven systems exists. The influence of the functional nonlinearity on the typical stochastic resonance
effects is pointed out.@S1063-651X~96!13009-9#

PACS number~s!: 05.40.1j

I. INTRODUCTION

The response of dynamical systems is an active field of
study, both at the theoretical and experimental levels. In par-
ticular, a large amount of work has been recently devoted to
understanding the phenomenon of stochastic resonance@1,2#.
In its simplest form, stochastic resonance occurs in a bistable
system driven by a time periodic external field. A typical
model repeatedly studied by many authors within this con-
text is that governed by the Langevin equation~see, e.g.,
@1–6#!

ẋ~ t !5x2x32AcosVt1h~ t !, ~1!

whereAcosVt represents the effect of the external signal and
h(t) is a Gaussian noise with zero mean and
^h(t)h(s)&52Dd(t2s). The corresponding Fokker-Planck
equation for the probability density is

] tP~x,t !5]x~x
32x1AcosVt1D]x!P~x,t !. ~2!

The dynamics is that of a driven Brownian particle moving
in the symmetric bistable potentialU(x)5x4/42x2/2 in the
large damping limit. The periodic field raises the potential
wells alternatively, and this effect, together with the action of
the stochastic term, makes the particle jump over the poten-
tial barrier. The resulting particle motion is coherent with the
driving field. The phenomenon of stochastic resonance exists
in the limit of weak driving amplitudes and for driving fre-
quencies smaller than the intrawell relaxation frequency, so
that the response of the system, measured by its long-time
noise average, shows oscillations with amplitudes which can
be much larger than the external amplitude. It exposes a
qualitative aspect of the noise, which is usually blurred by its
diffusive effect. Namely, noise can be looked upon as some-
thing useful, in the sense that it allows a weak input signal to
be amplified. Stochastic resonance has recently been ob-

served experimentally in a system where the noise was
purely thermal@7#, as well as in some biological systems
@8–10#.

The theoretical treatment of the problem can be carried
out by making use of two important theorems: theH theo-
rem, which ensures the existence of a uniquely determined
long-time limit solution, which is time dependent,P`(x,t),
and the Floquet theorem, which guarantees thatP`(x,t) is
periodic in time with the same periodT52p/V as the ex-
ternal force

P`~x,t !5P`~x,t1T!. ~3!

~In the following, by quasiequilibrium solutions of the
Fokker-Planck equation we will mean its long-time limit so-
lutions, which are explicitly dependent ont.! In particular, an
analysis of Eq.~2!, based on Floquet eigenmode expansions,
shows that, even though the autocorrelation function lacks
the strong mixing property, the long-time limit time-periodic
solution is always reached regardless of the initial condition
@3,5#.

Up to now, however, most of the theoretical approaches
have been limited to linear Fokker-Planck models, although
the linear case is not the generic case. In this paper, by non-
linear we mean Fokker-Planck equations with an explicit de-
pendence of the drift coefficient on the distribution function,
P(x,t). This contrasts with the more conventional usage in
the literature on stochastic resonance of the term ‘‘nonlinear
system,’’ which refers to a nonlinear dependence of the drift
on the state variablex. In order to avoid confusion, we will
call ‘‘truly nonlinear systems’’ to those systems with a non-
linear dependence on the distribution function. It is often the
case that models linear in the distribution function, are a very
poor and crude approximation which fails to exhibit a lot of
interesting phenomena inherent to real physical processes.
As an example of such phenomena, one can mention phase
transitions that are difficult to treat within the realm of a
linear Fokker-Planck operator, while they arise very natu-
rally in the truly nonlinear one@11#.

It is often the case that the driving forces depend on the
state of the system itself, thus leading to a truly nonlinear
Fokker-Planck equation whose drift and diffusion coeffi-
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cients are functionals of the probability distribution. These
equations play an important role in many branches of physi-
cal science, such as plasma physics@12#, kinetic theory of
gases@13#, nucleation@14#, or the theory of phase transitions
@11#. Clearly, truly nonlinear models are much richer as they
possess remarkable properties that are absent in linear ones.
In particular, they may have many distinct equilibrium solu-
tions. This feature of truly nonlinear systems is of particular
interest within the context of stochastic resonance, but their
study remains a sufficiently difficult and even impossible
task in most cases. The reason is that, in general, equations
nonlinear in the distribution function are not covered by
many useful theorems often applied to linear equations,
while their dynamics is usually beyond the powers of con-
ventional, widely accepted, methods. For instance, it is the
lack of a satisfactory analytical description for finite ampli-
tudes and/or frequencies driving fields, which prevents ones
from making use of the standard eigenmode expansions@3,5#
and perturbation techniques@1,15#, based on the Floquet
theory and theH theorem. It is possible, of course, to treat
nonlinear effects using perturbation expansions in terms of
linear response theory, but any of these techniques involves
approximations which limit their applicability to certain fa-
vorable regimes of parameter space@11,16#. On the other
hand, numerically exact calculations for these problems are
difficult. Simulations over very long time lengths are neces-
sary, while the efficacy of conventional stochastic simulation
methods @17# or iterative path integral schemes@18# is
strongly limited by their hardly controllable accuracy. More-
over, one must be cautious on the use of stochastic simula-
tion methods in the vicinity of phase-transition points that
are precisely the ones at which the maximum of the ampli-
tude due to stochastic resonance usually occurs. The reason
is that the convergence of stochastic simulations, which is
not so rapid by itself, becomes even slower in this domain
due to critical slowing down. As a result, one has to generate
a huge number of trajectories to reach an adequate level of
accuracy. Otherwise ‘‘unexpected’’ phenomena may arise
@19# ~this problem will be discussed in more detail in Sec.
III !. Finally, we would like to emphasize that none of the
above-mentioned techniques preserves automatically true
quasiequilibrium solutions of the analytic equation, when
they are numerically implemented.

It is, therefore, necessary to develop a simple computa-
tional tool for an accurate and error controlled treatment of
the nonlinear dynamics that is formally rigorous but also
amenable of extension to higher orders of approximation. In
a preceding paper@20#, such a technique has been developed
by rearranging the Fokker-Planck operator so that it contains
solely the second derivatives inx, and approximating these
derivatives with a central difference by using aK-point
Stirling interpolation formula. The finite-difference method
developed has a fifth-order convergence in time and a
2Kth-order convergence in space, allowing us to reach an
adequate level of accuracy with a mild increase in the num-
ber of grid points. The most appealing features of the method
are that it is norm-conserved, and equilibrium-preserving in
the sense that every equilibrium solution of the analytic
equations is also an equilibrium solution of the discretized

equations. The latter advantage is especially useful in study-
ing stochastic resonance when just the knowledge of long-
time solutions is necessary.

In the present work, we intend to study with this method
the combined effects of noise and time periodic external
forces in a truly nonlinear system which exhibits a phase
transition. The nonlinearity is brought about by the fact that
the overall system consists of very many subunits with
mean-field interaction among them@21#. The model will be
presented in Sec. II. In Secs. III and IV we check numeri-
cally the validity of the Floquet theory and theH theorem,
respectively, that have not been proven yet within the con-
text of nonlinear stochastic systems with periodic forcing.
One may expect that a strong enough external field would be
able to restore the ergodicity of the process, while the non-
linearity involved in the system would become an obstacle
for the application of the Floquet theorem which is so often
used in studying ordinary stochastic resonance in linear
problems. Shiino studied the dynamical response of the non-
linear system of interest to a periodically oscillating external
force @11#. In particular, using linear response theory, he was
able to derive a simple expression for the generalized sus-
ceptibility x(v),

x~v!5
R~v!

12uR~v!
, ~4!

valid in the limit of weak driving forces, whereu represents
the strength of the mean-field coupling among the subunits,
and R(v) is the generalized susceptibility of a linearized
stochastic process. Only very recently this formula has been
used by one of us@16# in order to numerically evaluate the
response of the system to a very weak driving field without
solving the truly nonlinear Fokker-Planck equation. Its valid-
ity, however, as well as the validity of calculations per-
formed in @16# have not been tested yet by comparing with
other numerically exact techniques whose utility is not re-
stricted to the limit of weak driving fields solely. In Sec. V
this comparison is done in terms of the present finite-
difference scheme. Sec. VI contains some final remarks.

II. TRULY NONLINEAR DRIVEN SYSTEM

In this work, we consider a truly nonlinear driven system
governed by

] tP~x,t !5]x@U8~x,t !1D]x#P~x,t !,

U~x,t !5
x4

4
2
x2

2
1

u

2
@x2^x~ t !&#21AxcosVt, ~5!

where the prime denotes differentiation with respect tox,
while the potentialU(x,t) depends upon the state of the
system through the average^x(t)&

^x~ t !&5E
2`

`

dxP~x,t !x. ~6!

It is seen that Eq.~5! reduces to the ordinary Fokker-Planck
equation~2! with u50. In the absence of the driving field
(A50) the model has been repeatedly studied by many au-
thors as a typical case for an order-disorder phase transition.
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The model deals with a system of infinitely many nonlinear
coupled oscillators in the presence of an external white
noise, and it was originally introduced by Kometani and
Shimizu@22# to study self-organization processes in biologi-
cal systems such as muscle contraction. A more complete
statistical-mechanical treatment given later by Desai and
Zwanzig @21# and by Dawson@23# pointed out its relation
with the Weiss-Ising model. Since the dynamical issues
about the relaxation of the undriven model to equilibrium
have already been analyzed in considerable detail by past
researchers@17,20,21,24#, starting from the very early work
of Desai and Zwanzig@21#, it does not seem necessary to
reconsider them here.

On the other hand, since equilibrium properties of the
undriven model are important for understanding those of Eq.
~5! we are interested in, they deserve to be pointed out. The
equilibrium distribution has a functional form given by

Pe~x!5R21exp2
1

D Fx44 2
x2

2
1

u

2
~x2xe!

2G , ~7!

whereR is the normalization factor, whilexe are the solu-
tions of

xe5E
2`

`

dxPe~x!x. ~8!

It is a simple matter to show that there is a critical line in the
parameter space defined by@21#

A2Dc5uD23/2~zc!/D21/2~zc!, ~9!

wherez5(u21)/A2D, and whereDn(z) is a parabolic cyl-
inder function, such that below this line,
uzu,uzcu (D.Dc), there exists only one stable equilibrium
distribution withxe50, while above it,uzu.uzcu (D,Dc),
there are two stable equilibrium solutions with^x&e56xe ,
besides the zero (^x&e50) unstable one. Thus, at the critical
line, there is a bifurcation of the equilibrium distribution
function. ForD,Dc it is always single peaked, while for
D.Dc , the stable equilibrium distribution has either one or
two maxima depending on whetheru is larger than or less
than 1.

A few years ago, Shiino proved anH theorem for the
above truly nonlinear Fokker-Planck equation in the absence
of the driving field@11#. It states that in the long-time limit,
the system always reaches one of the equilibrium solutions.
Clearly, for a givenu andD.Dc , the equilibrium is unique
regardless of the initial condition. On the other hand, for
D,Dc there are two stable equilibrium solutions and, ast
goes to infinity, the system approaches one or the other de-
pending upon the sign of^x(0)&, or in other words, upon the
initial preparation of the system. In this sense, one can say
that the functional nonlinearity breaks the ergodicity of the
process.

Unfortunately, even the simple system described here be-
comes extremely complicated ifAÞ0, particularly when
considering its quasiequilibrium properties. It is the func-
tional nonlinearity of the Fokker-Planck equation which pre-
vents us from making use of the Floquet theory. On the other
hand, when a periodic external field is present, we have not

been able to extend Shiino’sH theorem. In this regard, it is
of particular interest to check the validity of both concepts
numerically. If they turn out to be wrong one may conclude
that there is no simple extension of these concepts to truly
nonlinear driven systems. Otherwise, if no anomalous phe-
nomena are observed, we may expect that such an extension
does exist at least for this particular problem. In the latter
case, it makes sense to study quasiequilibrium solutions of
Eq. ~5! in more detail with the aim to reveal their properties
or relations that would be useful for both understanding the
problem and treating it systematically in a simpleanalytical
way.

But before presenting our results it is worthwhile to illus-
trate the power of the method employed in yielding precise
quasiequilibrium solutions on a truly nonlinear exactly solv-
able model driven by a periodic external field. A benchmark
model to test numerical methods is a generalized Ornstein-
Uhlenbeck process given by

] tP~x,t !5]x@gx1u^x~ t !&1AcosVt1D]x#P~x,t !,
~10!

whereg, u, A, V, andD are constants, while the moment
^x(t)& is defined by Eq.~6!. It is a simple matter to prove
that the fundamental solution of Eq.~10!, satisfying the ini-
tial condition

P~x,tux0!5d~x2x0!, ~11!

is unique and has the form

P~x,tux0!5@2ps~ t !#21/2expS 2
@x2^x~ t !&#2

2s~ t ! D , ~12!

^x~ t !&5x0e
2~g1u!t1

A@e2~g1u!tsinw2sin~Vt1w!#

@~g1u!21V2#1/2
,

tanw5
g1u

V
,

s~ t !5
D

g
~12e22gt!.

In Fig. 1 the time-averaged asymptotic probability inx, i.e.,

FIG. 1. Time-averaged asymptotic probability@Eq. ~13!# for a
test process@Eq. ~10!# for g5u5A5V51, andD50.1. Solid line,
exact results obtained from Eq.~12!; circles, evaluation using a
finite-difference method.
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P̄e~x!5
1

TE0
T

dsP̀ ~x,t1s!, ~13!

obtained from Eq.~12! for g5u5A5V51, andD50.1 is
shown and compared with that obtained by means of the
finite-difference method. Our results were calculated with
K51. A grid of 41 points was found to be sufficient to
propagate the distribution function in time until quasiequilib-
rium is reached. It is seen that a very accurate description of
the asymptotic regime is already attained in just the lowest
order approximation of the present technique, i.e., with
K51.

III. FLOQUET THEORY

In order to check the validity of the Floquet theory and
the H theorem for the truly nonlinear process governed by
Eq. ~5!, computations were carried out with different initial
conditions in a wide range of parameters, namely,
0.1<u<2, 0.05<D<1, 0<A<0.5, and 0.01<V<1. One
can mention here that in the absence of the driving field and
with u<1, the height of the potential barrier below the criti-
cal line is 1

4(u21)2, while the largest relaxation time is of
order

t5
p

A2
~12u!21exp~2z2/2!. ~14!

We have found, first, that after some transient period the
system always reaches quasiequilibrium, and, second, that
depending onu, D, A, andV one or two quasiequilibrium
solutions exist, as is the case for the undriven system as well.

In all the cases studied we find that the relation~3! holds
within the accuracy of the method used for all quasiequilib-
rium solutions which may exist. No kind of aperiodicity in
the temporal evolution ofP`(x,t) and^x(t)&` has been ob-
served. Both quantities show oscillations of frequencyV. It
is interesting to note that the same is true for the averages
^x2k11(t)&` , that are all oscillating with frequencyV, while
the averageŝx2k(t)&` oscillate either with frequencyV or
2V, depending onu, D, andA. For small values ofA they
usually oscillate withV, while the frequency is 2V other-
wise. Fourier analysis of the averages shows a very rapid
convergence of the series

^xk~ t !&`5E dxP`~x,t !xk

5 (
n50

ancos~nVt1wn!, ~15!

so that two or three terms of this series are usually sufficient
to attain a very accurate description. We note, in particular,
that a simple approximation of the form

^xk~ t !&`
F5a01ajcos~ jVt1w j !, ~16!

wherej51 or 2, depending onk andA ~see in the above!, is
found to work well in most cases of interest.

Since the conclusions drawn in all the cases considered
are essentially the same, only the results for

u50.5, D50.125 (z51), A50.2, andV50.1 are shown
in Figs. 2 and 3, where we plot the time evolution of the first
two moments, andP`(x,t), respectively. For comparison,
we also show in Fig. 2 the approximation

^x~ t !&`
F51.0378cos~Vt11.618!10.186cos~3Vt10.991!

10.0589cos~5Vt10.216!, ~17!

which is obtained from the Fourier analysis of the average
response. This is just that rare case when three terms of the
series in Eq. ~15! are necessary to approximate well
^x(t)&` . As evidenced by Figs. 2 and 3, after some transient
period t;T the temporal evolution becomes obviously peri-
odic with a frequency equal to the driving frequency, while
the average responsêx(t)& shows an oscillation with an
amplitude larger than the driving amplitude. It is seen also
that Eq.~17! very soon turns out indistinguishable from the
numerically exact results. Our findings allows us to conclude
that the Floquet theory is valid for the truly nonlinear process
~5! at least in its long-time limit form~3!. This is the first
principal result of the present work.

It is in contrast to the results of@19# where it was found
that the system’s response is not periodic in time for
u50.5,A50.2, andV50.1 in the interval 0.69,z,1.2. A
simple reason for this seems to be the fact that the ‘‘phenom-
enon’’ of aperiodicity was met just in the vicinity of the
critical line in which some kind of critical slowing down
occurs. In the absence of external driving, this is shown to
manifest in the form of the divergence of relaxation time on

FIG. 2. Temporal evolution of̂x(t)& and^x2(t)& for the model
~5! for u50.5,D50.125 (z51), A50.2, andV50.1. Solid line,
numerically exact results; circles, approximation~17!.
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approaching phase-transition points@11#. One may expect
that the same would be true for the driven system as well.
Indeed, with our numerical method, we have found, first, that
in the case considered, there is a shift of the critical line with
respect to the undriven case fromzc(A50)50.69 to
zc(A50.2)51.18. And, second, the relaxation time neces-
sary for the nonlinear driven system to reach quasiequilib-
rium in the vicinity of the phase-transition points is usually
larger by a factor of 2 than the one needed away from the
critical line. As a result, stochastic simulations converge very
slowly in the neighborhood of the critical line, and one needs
to generate too many trajectories to get a good estimate for
P`(x,t). For completeness, we also show in Fig. 4 the be-
havior of the amplification factor, which is the ratio between
the amplitude of̂ x(t)&` and that of the external signalA,
with respect toz for u50.5, A50.2, andV50.1, and com-
pare our results with those obtained by a stochastic simula-
tion technique@19#. As it is seen from Fig. 4, there is a
plateau in the interval 0.69,z,1.2, in which the maximum
of the amplification factor is achieved. Our results are in
qualitative agreement with those of stochastic simulations.
This agreement is not surprising, as the amplification factor
turns out to be rather insensitive to the periodicity of the
system’s response. By this we mean that a more or less ac-
curate estimate of the amplification factor can be obtained
even for the first oscillationt<T when the temporal evolu-
tion is not really periodic because quasiequilibrium
P`(x,t) is not reached yet. It must also be pointed out that
the amplification factor of the truly nonlinear system is larger
than that of the usually studied case corresponding tou50,
Eq. ~2!.

IV. H THEOREM

As we have already emphasized, in all the cases studied
we find that with increasingt the system always reaches
quasiequilibrium. Moreover, in most cases of interest, the
average long-time response is well approximated by the first
two terms of the series in Eq.~15!, i.e.,

^x~ t !&`5 x̄e1Auxucos~Vt1w!, ~18!

where

x̄e5E
2`

`

dxP̄e~x!x, ~19!

and wherex is a function ofu, A, V andD, which can be
interpreted as the generalized susceptibility, while the modu-
lus uxu is nothing else than the amplification factor.

We note further that there is a critical surface dividing the
parameter space (u,D,A,V) into two regions, so that in one
region the system has only one quasiequilibrium solution
with x̄e50, while in the second region there are two possible
steady-state values ofx̄e . As a result, in the first region the
quasiequilibrium is unique regardless of the initial condition.
While in the second region there are two quasiequilibrium
solutions and, ast goes to infinity, the system approaches
one or the other depending upon the value of^x(0)&. Both
situations are clearly illustrated by Fig. 5 which shows the
temporal evolution of the system’s response^x(t)& with dif-
ferent initial conditions. Except for this kind of sensitivity to
the initial preparation, inherent to the undriven system as
well @20,24#, no other nonergodicity phenomena that could
be expected due to the large driving amplitude and/or fre-
quency, have been revealed. With these observations one
may conclude that there is a straightforward extension of
Shiino’sH theorem to the truly nonlinear system driven by a
periodic external field. This is the second principal result of
the present work.

Therefore, it is of particular interest to study in detail the
long-time limit properties of the driven system. The neces-
sary computational work has been carried out in a wide range
of parameters. The main finding is that these properties are
very similar to the equilibrium properties of the undriven
system, but there is a shift of the critical surface

FIG. 3. Same as in Fig. 2, but for the quasiequilibrium distribu-
tion functionP`(x,t1rT) for r50, 0.2, 0.4, 0.6, 0.8, and 1.

FIG. 4. Amplification factor as a function ofz for
u50.5, A50.2, andV50.1. Solid line, results obtained by a
finite-difference method; circles, results of stochastic simulations
@19#. Dashed line, results for the linear driven systemu50.
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zc~u,A,V!5zc
0~u!1Dz~u,A,V!,

wherezc
0(u) is defined by Eq.~9!. As we have been unable

to calculateDz(u,A,V) in the whole range of parameters we
have calculated this shift for some fixed values ofA andV
as a function ofu. So, by critical line we will mean in the
following zc(u)5zc

0(u)1Dz(u), calculated for fixedA and
V.

Before presenting our results on the properties of the
long-time limit solutions of the driven system, it must be
pointed out that these can be analyzed more systematically
and conveniently if one proceeds from the quasiequilibrium
solutions P`(x,t), satisfying the time-dependent Fokker-
Planck equation~5!, to their time averages defined by Eq.
~13!. In the following, we will refer to equilibrium properties
of the driven system as meaning those of the time-averaged
asymptotic solutionP̄e . The most appealing feature of this
representation is that the time-averaged asymptotic solutions
of Eq. ~5! turn out to be time-independent, which is not
surprising in view of Eq.~3!. The corresponding stationary
Fokker-Planck equation reads

]x@x
32x1u~x2 x̄e!2 f ~x!1D]x# P̄e~x!50, ~20!

where f (x) is defined by

f ~x!P̄e~x!5
1

TE0
T

dsP̀ ~x,t1s!$u@^x~ t1s!&`2 x̄e#

2AcosV~ t1s!%. ~21!

The major problem remaining is to determine the function
f (x). Unfortunately, we have been unable to evaluate it ana-
lytically. We have found numerically thatf (x) is antisym-
metric with respect tox5 x̄e , and well approximated by

f ~x!5S~x!~x2 x̄e!, ~22!

with the slopeS being a function ofu, D, A, andV, which
varies slowly withx in the vicinity of peaks of the distribu-
tion function. Therefore, we introduce a negligible error if
one considersS independent ofx. This is the third principal
result of the present work. It means that time-averaged as-
ymptotic solutions of the driven system are described by the
equation

P̄e~x!5R21exp2
1

D Fx44 2
x2

2
1
1

2
~u2S̄!~x2 x̄e!

2G ,
~23!

where the shiftS̄ is chosen independent ofx and determined
from

S̄5E
2`

`

dxP̄e~x! f 8~x!. ~24!

One can easily see that the above equation is quite similar to
that of the undriven system@cf. Eq. ~7!#. It must also be
pointed out that the very same result is obtained if one de-
terminesf (x) not from Eq.~21!, but by approximating the
numerically exactP̄e(x) according to Eq.~23!.

The typical form of the time-averaged asymptotic distri-
bution functionP̄e(x), as well as of the dependenceS of x,
obtained numerically below (D50.25), at (D50.175), and
above (D50.1, x̄e560.9) the critical line, is shown in Fig.
6 for u50.5, A50.1, V50.1. For the sake of comparison
we also show in the figure the equilibrium distribution of the
shifted undriven system given by Eq.~23!. As it is evidenced
by Fig. 6, the equilibrium distribution functions are indistin-
guishable from each other, andS is a rather slowly varying
function ofx. In the following we will characterize the shift
by its average value evaluated in Eq.~24!, but we will omit
the bar on top.

It is thus seen that the effect of the periodic external field
results in the shiftS. The latter is a function of the problem
parameters which is yet to be determined. This is especially
pleasing, since the temporal evolution of the driven and un-
driven systems are very different from each other. It is
worthwhile noticing also that ifSwere precisely independent
of x, Eq.~23! would automatically mean a weak extension of
Shiino’s H theorem in the sense that this theorem would
appear to be valid for the time-averaged asymptotic distribu-
tion of the driven system.

With the above results it is not difficult to analyze the
equilibrium properties of the driven system. These are
wholly determined byS which is generally a function of
u, D, A, andV. As we are interested, however, in the ef-

FIG. 5. Temporal evolution of the system’s response^x(t)& for
u50.5, A50.1, V50.1 calculated with different initial condi-
tions below (D50.25, z50.71, x̄e50), and above
(D50.1, z51.12, x̄e560.9) the critical line.
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fect of the external field, we will focus our studies on the
behavior of the shift withA andV. To begin with, let us
considerS as a function ofA regardingV fixed and finite.
There are two distinct limits in the dependenceS on A. At
A50 the system becomes undriven and nothing interesting
happens. At very small but finiteA’s, the shape of the qua-
siequilibrium distribution remains very similar to that of the
undriven system everywhere except at the stationary points,
determined fromU8(x)50. In the vicinity of these points
U8(x) is comparable withA. This leads to weak oscillations
of the maxima of the distribution function, as well as of the
averageŝ xk(t)&` with one and the same frequencyV, and
with x̄e5xe . This is clearly the region of validity of linear
response theory, when the probability density can be ex-
panded around the equilibrium solution of the undriven sys-
tem. With increasing amplitudes of the external field, the
regions whereU8(x) is comparable withA become broader.
Thus, there exist oscillations not only of the maxima of the
distribution function themselves, but also of their location, so
that x̄e is no longer equal toxe . Meanwhile the principal
frequency of even powers averages^x2k(t)&` appears to be
2V. This is the region where linear response theory becomes
inadequate. Moreover, in the close vicinity above the critical

line, two disconnected equilibrium solutions of the undriven
system turn out to be connected due to the external field, so
that the system switches between them. The resulting long-
time limit solution in this region is unique and corresponds
to x̄e50, while the critical line appears to be shifted. The
shift increases with increasingA, and in the limit of infinitely
large driving amplitudes the behavior becomes wholly deter-
mined by the external field, and no bifurcation of the long-
time limit solution occurs. The above observations are illus-
trated in Fig. 7, which shows the shiftS as a function of the
driving amplitudeA for D50.25, u50.5, andV50.1. It is
seen that the dependenceS(A) is not linear as one might
expect from Eqs.~18! and ~21!. For completeness, the am-
plification factor is also shown in the figure and compared
with that of the corresponding linear system (u50). It is
seen that it increases with decreasingA, and yet the ampli-
fication factor of the truly nonlinear system is much larger
than that withu50. Finally, it must be pointed out that the
results obtained for the shiftS are in agreement with those
obtained for the shift of the critical lineDz(u). The latter are
shown in Fig. 8.

The behavior ofS with V is simpler. ForV50 the sys-
tem becomes undriven. Its equilibrium properties are slightly
different from those of Eq.~7! and given by

Pe~x!5R21exp2
1

D Fx44 2
1

2
x21

u

2 S x2xe1
A

u D 2G .
~25!

FIG. 6. Time-averaged asymptotic probabilityP̄e @Eq. ~13!#,
and shiftS @Eqs. ~21! and ~22!# as functions ofx calculated for
u50.5, A50.1, V50.1 below (D50.25), at (D50.175), and
above (D50.1, x̄e560.9) the critical line. Circles are the results
for the shifted undriven system given by Eqs.~23! and ~24!.

FIG. 7. ShiftS, Eq. ~24!, and amplification factor as a function
of the driving amplitudeA for D50.25, u50.5, andV50.1.
Dashed line, results for the linear driven systemu50.
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On the other hand, for each fixed value of the amplitude, in
the limit of frequencies larger than that of interwell relax-
ation, the system becomes insensitive to the external field
even for finite amplitudes, because of too fast oscillations,
and, therefore, its equilibrium properties become indistin-
guishable from those of Eq.~7!. One may thus expect that in
this limit, linear response theory would also be valid what-
ever the fixed amplitude of the external field considered. In
Fig. 9 we show the behavior of the shiftS and amplification
factor with the driving frequencyV. It is seen that the shift
rapidly decreases from its maximal value at very small

V ’s, to zero atV.1, and yet the amplification factor in-
creases considerably with decreasing the driving frequency.
For comparison, we also show in the figure the amplification
factor of the corresponding linear system (u50). This factor
is seen to be much smaller than that foru.0.

Since the resonance properties of the truly nonlinear sys-
tem turn out to be very sensitive to the parameter of nonlin-
earityu, it makes sense to show the typical behavior ofSand
amplification factor withu. As it is seen from Fig. 10, the
dependence of the shift onu is almost linear. The amplifica-
tion factor reaches its maximal value in the neighborhood of
the critical line, and then slowly decreases with increasing
u.

V. LINEAR RESPONSE THEORY

Finally, we check the validity of linear response theory by
comparing our results foruxu @see Eq.~18!# with those ob-
tained in Ref.@16# through Eq.~4!. From the very beginning
it is clear that these calculations should be correct, as they
were performed with amplitudes of the external field smaller
than the height of the potential barrier (12u)2/4. Indeed, as
evidenced by Fig. 11, the agreement between the results is
excellent. This means that the perturbation method suggested
in Ref. @16# offers a very simple tool for describing proper-
ties of the truly nonlinear system without solving the corre-
sponding Fokker-Planck equation. We also note that in all
the cases considered, the maximum in the dependence of the
amplification factor withD and/orz occurs in the close vi-

FIG. 8. Equilibrium phase diagram for the model~5! for
V50.1. Solid line, results for the critical line of the undriven sys-
temA50, Eq.~9!. The dashed and circles connected by solid lines
are the results forA50.1, andA50.2, respectively.

FIG. 9. ShiftS, Eq. ~24!, and amplification factor as a function
of the driving frequencyV for D50.25,u50.5, andA50.01, and
0.1. Dashed line, results for the linear driven systemu50.

FIG. 10. ShiftS, Eq. ~24!, and amplification factor as a function
of u for D50.175, V50.1, andA50.1.
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cinity above the critical line where the system is already
monostable. We again emphasize that the amplification fac-
tor of the truly nonlinear system is usually much larger than
that of the corresponding linear system (u50).

VI. CONCLUSIONS

In this paper, we have studied numerically the combined
effects of noise and time periodic external forces in a truly
nonlinear system which exhibits a phase transition. The sys-
tem is described by a Fokker-Planck equation with an ex-
plicit dependence of the drift coefficient on the distribution

function. To the best of our knowledge, our work is the first
attempt to check the validity in this context of the powerful
Floquet theory and theH theorem so often applied to linear
and/or undriven systems. The principal results obtained are
as follows.

~i! No kind of aperiodicity in the temporal evolution of
P`(x,t) and^xk(t)&` has been observed. The relation~3! is
found to hold within the accuracy of the method used for all
quasiequilibrium solutionsP`(x,t) that may exist. Our cal-
culations show the validity of the Floquet theory at least in
its long-time limit form ~3!, despite a number of problems
‘‘expected’’ from a rigorous point of view. This is an impor-
tant result indicating that the functional nonlinearity involved
in Eq. ~5! needs not be an obstacle neither for the use of Eq.
~3! in studying stochastic resonance in this system nor for the
prediction of its quasiequilibrium properties.

~ii ! As t goes to infinity, the system always reaches qua-
siequilibrium. No kind of nonergodicity, which might be ex-
pected due to the large driving amplitude and/or frequency,
except for that inherent to the undriven system itself, has
been observed. This allows us to conclude that Shiino’sH
theorem may be extended to the truly nonlinear system
driven by a periodic external field.

~iii ! What is most remarkable is that the equilibrium prop-
erties of the driven system turn out to be quite similar to
those of the shifted undriven system, given by Eq.~23!. The
major unresolved problem is to determine the dependence of
the shift on the problem parameters. Determining the shift
analytically is particularly efficient when dealing with equi-
librium properties of the driven system, such asx̄e , P̄e(x)
andzc(u,A,V). Then, these are no more difficult to evaluate
than in the purely undriven case.

~iv! Linear response theory, as expected, is found to be
valid for small driving amplitudes. From our analysis one
expect that it would also be valid in the limit of large fre-
quencies regardless of the amplitude of the external field.

~v! Of particular importance is the fact that the functional
nonlinearity is found to considerably increase the resonance
properties of the system under study in the sense that the
amplification factor of the truly nonlinear system~5! usually
turns out to be much larger than that of the corresponding
linear one, Eq.~2!, whateverA.0.

We believe that the results presented will provide the nec-
essary foundation for further analytical treatment of the prob-
lem.
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